Zernike moments and svm for shape classification in very high resolution satellite images
نویسندگان
چکیده
In this paper, a Zernike moments-based descriptor is used as a measure of shape information for the detection of buildings from Very High Spatial Resolution (VHSR) satellite images. The proposed approach comprises three steps. First, the image is segmented into homogeneous objects based on the spectral and spatial information. MeanShift segmentation method is used for this end. Second, a Zernike feature vector is computed for each segment. Finally, a Support Vector Machines (SVM)-based classification using the feature vectors as inputs is performed. Experimental results and comparison with Environment for Visualizing Images (ENVI) commercial package confirm the effectiveness of the proposed approach.
منابع مشابه
Pseudo Zernike Moment-based Multi-frame Super Resolution
The goal of multi-frame Super Resolution (SR) is to fuse multiple Low Resolution (LR) images to produce one High Resolution (HR) image. The major challenge of classic SR approaches is accurate motion estimation between the frames. To handle this challenge, fuzzy motion estimation method has been proposed that replaces value of each pixel using the weighted averaging all its neighboring pixels i...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملTarget Discrimination Based on Zernike Moments in High-Resolution SAR Imagery
Target discrimination is the key step of automatic target detection (ATR) in synthetic aperture radar (SAR) images. In this paper, a new algorithm for target discrimination in high resolution SAR image is presented by utilizing Zernike moments as descriptors of shape and intensity characteristics which have linear transformation invariance properties. The input regions of interest (ROIs) are se...
متن کاملAn extended feature set for blind image steganalysis in contourlet domain
The aim of image steganalysis is to detect the presence of hidden messages in stego images. We propose a blind image steganalysis method in Contourlet domain and then show that the embedding process changes statistics of Contourlet coefficients. The suspicious image is transformed into Contourlet space, and then the statistics of Contourlet subbands coefficients are extracted as features. We us...
متن کاملSVM Classification of Urban High-Resolution Imagery Using Composite Kernels and Contour Information
The classification of remote sensing images has done great forward taking into account the image’s availability with different resolutions, as well as an abundance of very efficient classification algorithms. A number of works have shown promising results by the fusion of spatial and spectral information using Support Vector Machines (SVM) which are a group of supervised classification algorith...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. Arab J. Inf. Technol.
دوره 11 شماره
صفحات -
تاریخ انتشار 2014